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On the number of spiral self-avoiding walks on a triangular 
lattice 

K Y Lin and K C Liu 
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic 
of China 

Received 6 June 1985 

Abstract. An elementary derivation of the complete asymptotic expansion for the number 
S, of spiral self-avoiding walks with n steps on a triangular lattice is given. 

Spiral self-avoiding walks (SSAW) on a square lattice were first introduced by Privman 
(1983). The asymptotic behaviour of the number S,, of SSAWS with n steps has been 
studied by several authors (Blote and Hilhorst 1984, Whittington 1984, Redner and 
de Arcangelis 1984, Klein et a1 1984, Guttmann and Wormald 1984, Joyce 1984, 
Guttmann and Hirschhorn 1984). In particular, Joyce (1984) derived a complete 
asymptotic expansion for S,, which is valid as n + 00. 

The SSAW problem on a triangular lattice is properly defined as those self-avoiding 
walks which, at every step, either go straight ahead, turn through 60", or turn through 
120" (both to the left). The simpler problem where 60" deviations are forbidden has 
recently been solved by Lin (1985), Joyce and Brak (1985) and Liu and Lin (1985). 
Joyce and Brak (1985) established a complete asymptotic expansion for S,, using the 
asymptotic techniques developed by Wright (1933) which are unknown to most physic- 
ists. The purpose of the present paper is to describe an elementary derivation using 
well known techniques. 

We first solve the simpler problem of the subclass of SSAW which only spirals 
outward. We have (Lin 1985, Joyce and Brak 1985) 

S : = k l p ( k )  
k=O 

where S: is the number of n-step SSAWS on a triangular lattice which only spiral 
outward, and p (  k )  is the number of all partitions with distinct parts. From the work 
of Hua (1942), it is known that p ( n )  can be written as a convergent series whose 
leading-order term for n + is (see Andrews 1976, p 82) 

p ( n ) -  .rr(24n+1)-"2Z1[.rr(48~+2)"2/12], (2) 

where 
W 

I,(z) = (d/dz)Zo(z) = ( ~ / 2 ) ~ " " / n ! ( n +  I ) !  
n =O 

(3) 
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and Ij is a modified Bessel function of order j .  The asymptotic expansion of SX is 
determined from the Euler-Maclaurin sum formula (Bender and Orszag 1978, p 305): 

oc 

k = O  f ( k ) - l " f ( r ) d i + : f ( n ) +  f = 2  B,f('-')(n)/?!, (4) 

where the Bernoulli numbers B, are defined by 
m 

?/(e '  - 1) = 1 B,t"/n!. 
n = O  

We have Bo = 1, Bl = -f, B, = a ,  B4 = -& and B2n+l = 0 for n > 0. It follows from (2) 
and (4) that 

where 

p l (n)  = ~ ~ 2 - l ' ~  (6x)- 'I l(x) (7) 
and x = n-( n + 1/24)'/2/31/2. Using the formula (see Gradshteyn and Ryzhik 1965, 

(8) 

P 970) 

(d/x dx)"'[ x-"In (x) ]  = x-"-"I,,,+~ (x), 

we get 

pir-"( n)  = 2-'12( 7'/6)'(d/x dx)'-'[x-'I,(x)] 

= 2-1/'(n-2/6~)'1,(x). 

We now apply the Lommel expansion (Watson 1944) to equation (9) and obtain 

X-'It(x) = z-I( 1 + &)-'/21r[z( 1 + & ) ' / 2 ]  

m 

= z-' (&z/2)pI,+p(z)/p! 
p = o  

where 

x = z( 1 + &)'/2, z = n-(n/3)'/', E = 1/24n. 

Hence we get 

(9) 

S:-2-'/2 r=o 2 p = o  f B,(n-2/6~)f(~z/2)PI,+p(~)/p!r!. (11) 
Finally we substitute the asymptotic expansion (Gradshteyn and Ryzhik 1965, p 962) 

m 

1,,(z)-(2n-z)-~/~ ez 2 (-1)r(n, r)(2z)-r 

(n, r )=2-2r(4n2-1)(4n2-32) .  . . [4n2-(2r-1)']/r! 

(12) 
r = O  

in equation { 1 l ) ,  where (n, 0) = 0 and 

(13) 
for r > O .  The result is (Joyce and Brak 1985) 

m 
S: - ( 2 ~ ) - ' ( 3 / n ) ' ' ~  e~p[n- (n /3) ' /~]  1 u,n-m/2 

m = O  
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for n + m ,  where 

m m-p 

um=(-3' /2/2r)m (-r2/3) '+PBr(r+p, m -  t - - ~ ) / ( 2 4 ) ~ p ! t ! .  
p = o  1=0 

The corresponding result for SSAWS on a square lattice is 

S', - (4r)- ' (2/  n)1/2 exp[.r(2n/3)'"] u L i C m l 2  
m=O 

where 
m m-p  

p=o  r = o  
U; = ( -61/2/4r)m ( - 1 ) r ( ~ r 2 ) f + P B r ( ~ +  t + p ,  m - t -p)/(24yp! t!. 

The first three coefficients are 

U;= 1, 

U ;  = - 13 ( 3 / 2 ) " 2 ~ / 7 2  - -0.6947, 

~ ; = ( 1 2 1 r ~ +  1872)/6912-0.4436. 

Formula (16) is a new result which has not been reported in the literature. 

Joyce and Brak 1985) 
We now consider the problem of all SSAWS. The generating function is (Lin 1985, 

G ( z ) = C  S , , Z " - ( ~ Z ~ + ~ Z ~ + ~ Z ~ - ~ Z - ~ ) Z - ~ ( ~  -z)*(1-z3)-'g2(z), 

where 

n 

\ n = O  

It can be shown by the Hardy-Ramanujan-Rademacher method (see Andrews 1976, 
p 68) that to leading order 

p2(  n) - r ( 2 4 n  + 2)-1'2Zl[ r ( 2 4 n  + 2)'12/6]. 

We define 

where 

h = n -3[n/3], and [a] is the integer part of the number a. We apply the Euler- 
Maclaurin sum formula to (23) and obtain 

where 

x = z (  1 + &)1'2, z = r (2n/3) ' /* ,  E = 1/12n. 
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It follows from (19) that 

where a-, = 2, a-2 = 1, a-, = -4, a, = -3, a, = 2, a2 = 3, a3 = 0 and a4 = -1. Following 
the same procedure as before, the final result is 

m 

e x p [ ~ ( 2 n / 3 ) ' / ~ ]  1 u,n-m/2, (26) s, - 21/43-7/4Tn-5/4 
m =O 

where 
m m-p 

U,,, = (1152)- '(-61'2/4~)m C ( -1)"(2~~)""B,  
p = o  t = O  

x ( p + t + 2 ,  m - p - t )  s=-3 a 3 ( 1 2 s + l ) p " ) / t ! ( p + 2 ) ! ( 3 6 ) p .  (27) 

Equation (27) is equivalent to the result of Joyce and Brak (1985) if we make the 
replacement 

as(12s+l)P+2+(-1)1 a , ( 1 2 ~ + 3 7 ) ~ + ~ .  
s = - 3  s = - 3  

The replacement is allowed because of the following identity: 

[ u/(e" - l ) ]  exp[ u ( x  + 36)/36] = 1 
m o c  

B,u'+'(x + 36)p/ t ! p  ! (36)p 
1=0 p = o  

= [(-u)/(e-" - I ) ]  exp(ux/36) 
0 0 0 )  

= 1 (-1)'B,~'+~~~/t!p!(36)~. (29) 
r = o  p = o  

We were not aware of the work of Joyce and Brak until we finished our derivation. 
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